Preliminary Imaging Result for G19.61 using ParselTongue Pipeline

2019 East Asian VLBI Workshop

2019.09.26

Eodam Hwang

Star Formation sub-Working Group

Understanding to high-mass star formation process Dynamical evolution Circumstellar structure 3-Dimensional velocity field of masers Proper motion of masers Monitoring observation

Observation

Code	Time (UT)	Band	PI	Title	Mode
k19th05a	2019-09-11 05:55 ~ 2019-09-11 13:15	K22GHz,Q43GHz	Tomoya Hirota	KaVA SFR LP 2018 K-5:G354.61:I18018:I20198	Edit Vie w / Pop
k19th04d	2019-09-09 06:35 ~ 2019-09-09 14:35	Q43GHz	Tomoya Hirota	KaVA SFR LP 2019 Q (G357.967 G18.34SW G49.49)	Edit Vie w / Pop
k19th04c	2019-05-09 13:36 ~ 2019-05-09 21:16	K22GHz,Q43GHz	Tomoya Hirota	KaVA SFR LP 2018 K-4:G351.24:RCW142:G49.49:W51D Corr date: 2019-09-20 Corr date: 2019-09-20 Corr date: 2019-09-20 Release: 2019-09-22 Release: 2019-09-22	bservations
k19th03b	2019-05-08 13:45 ~ 2019-05-08 21:25	K22GHz	Tomoya Hirota	KaVA SFR LP 2018 K-3:G354.61:I18018:I18056:I20198 Corr date: 2019-09-17 Corr date: 2019-09-17 Corr date: 2019-09-17 Release: 2019-09-17 Release: 2019-09-17 Release: 2019-09-17	n second year
k19th01b	2019-04-13 15:30 ~ 2019-04-13 23:10	K22GHz,Q43GHz	Tomoya Hirota	KaVA SFR LP 2018 K-1:G10.62:G13.874:G25.82:G45.07) Corr date: 2019-07-16 Corr date: 2019-07-16 Corr date: 2019-07-16 Release: 2019-07-17 Release: 2019-07-17	Edit Vie w / Pop
k19th02b	2019-04-09 16:35 ~ 2019-04-10 01:00	Q43GHz	Tomoya Hirota	KaVA SFR LP 2019 Q Corr date: 2019-07-15 Corr date: 2019-07-15 Release: 2019-07-18 Release: 2019-07-18	Edit Vie w / Pop

Necessity of Pipeline

- Large amount of data
- 2 observations / month
- Complicated & Repeated process
- required so many time
- Limited resource
- Reduce the data reduction time

ParselTongue http://www.jive.eu

- ParselTongue is an interpreter that allows Python to understand AIPS
- The pipeline is based on python

KVN Pipeline

- KVN pipeline is developed by Dr.Yun (Youngjoo) in KASI
- For KVN 3 stations
- For maser of evolved star
- For SFPR (Source Frequency Phase Referencing) method

KVN Pipeline

• KVN pipeline is developed by Dr.Yun (Youngjoo) in KASI

-For KVN 3 stations expand to fit KaVA data

-For maser of evolved star For Star-Forming Regions Difference of Scale and MASER distribution

- For SFPR (Source Frequency Phase Referencing) method

Imaging method

Single field images include strong sidelobe contamination

Imaging method comparison

can not detect strong component

red circle: strong component (~9Jy)

Imaging method comparison

Pipeline Structure for SFRs

Image comparison (Manual VS Pipeline)

Find Line Peak & Channel

Summary

- Need to more efficient data reduction for many data set
- Pipeline is well working in current data set.
- Pipeline has some bug in some data set.
- Need to modify for find line channel.