East ASIA VLBI Network Observations at 230 GHz

Kenta Fujisawa (Yamaguchi univ.) on behalf of Asada-san and EAVN -hi- collaboration

Introduction

Event Horizon Telescope (230 GHz)

- One sessions / yr: End of March
- Each session: ~ 5 day within 10 days slots
- Open sky policy
- Host institute: EHTC
- Due for the proposal: ~ April 20th (propose to ALMA)

Further Possible expansion of EHT

Table 2: Current and planned stations for 1.3 mm VLBI. EA contributions are shown in bold.

Stations	Location	Diameter [m]	SEFD [Jy]	Status
ALMA 37	Chile	37×12	100	2017 -
APEX	Chile	12	3600	operational
GLT	Greenland	12	7800	2018 (planned)
IRAM 30m	\mathbf{Spain}	30	1400	operational
JCMT	Hawaii	15	4700	operational
LMT	Mexico	32	1400	operational
NOEMA	France	15	5200	operational
SMA	Hawaii	8×6	4000	operational
SMT	Arizona	10	11000	operational
SPART	Japan	10	10000	2018? (planned)
SPT	South Pole	10	9000	operational
SRAO	Korea	6	40000	2018? (planned)

1. KVN at 230 GHz with FPT?

- 2. Balloon Borne VLBI led by ISAS/JAXA
- 3. Re-activate ASTE for VLBI ?
- 4. Seek the process to use ACA ?

Two important direction for mm/submm VLBI community in EA

- a. Participate/contribute to global efforts (e.g., EHT and GMVA)
 - KVN participate GMVA
 - JCMT is one of the initial stations of EHT
 - GLT started to participate EHT and GMVA from this year
 - Approved ALMA CY7 EHT projects: Koyama+ Mrk501
- b. Do unique things as (regional) efforts
 - KVN is unique VLBI array observable at 86 and 129 GHz with FPT
 - NRO45m at 86 GHz led by Imai-san and Niinuma-san
 - We (will) have JCMT and GLT at (86) and 230 GHz

EAVN at 86 GHz, 230 GHz and even higher?

EA mm/submm White Paper

White Paper on East Asian Vision for mm/submm VLBI:

Toward Black Hole Astrophysics down to Angular Resolution of $1 R_s$

Editors

Asada, K.¹, Kino, M.^{2,3}, Honma, M.³, Hirota, T.³, Lu, R.-S.^{4,5}, Inoue, M.¹, Sohn, B.-W.^{2,6}, Shen, Z.-Q.⁴, and Ho, P. T. P.^{1,7}

Authors

Akiyama, K.^{3,8}, Algaba, J-C.², An, T.⁴, Bower, G.¹, Byun, D-Y.², Dodson, R.⁹, Doi, A.¹⁰, Edwards, P.G.¹¹, Fujisawa, K.¹², Gu, M-F.⁴, Hada, K.³, Hagiwara, Y.¹³, Jaroenjittichai, P.¹⁵, Jung, T.^{2,6}, Kawashima, T.³, Koyama, S.^{1,5}, Lee, S-S.², Matsushita, S.¹, Nagai, H.³, Nakamura, M.¹, Niinuma, K.¹², Phillips, C.¹¹, Park, J-H.¹⁵, Pu, H-Y.¹, Ro, H-W.^{2,6}, Stevens, J.¹¹, Trippe, S.¹⁵, Wajima, K.², Zhao, G-Y.²

¹ Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan

- ² Korea Astronomy and Space Science Institute, Daedukudae-ro 776, Yuseong-gu, Daejeon 34055, Republic of Korea
- ³ National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan
- ⁴ Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China
- ⁵ Max-Planck-Institut f
 ür Radioastronomie, Auf dem H
 ügel 69, D-53121 Bonn, Germany
- ⁶ University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
- ⁷ East Asian Observatory, 660 N. Aohoku Place University Park, Hilo, Hawaii 96720, USA
- ⁸ Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886, USA
- ³ The International Centre for Radio Astronomy Research, The University of Western Australia, M468, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- ¹⁰ Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210, Japan
- ¹¹ Commonwealth Scientific and Industrial Research Organisation, Astronomy and Space Science, P.O. Box 76, Epping NSW 1710, Australia
- ¹² Yamaguchi University, Yoshida 1677-1, Yamaguchi, Yamaguchi 753-8512, Japan

Sci	entific	Objectives	6
2.1	Shade	w of Super Massive Black Holes	6
	2.1.1	General Objectives	6
	2.1.2	Sgr A*	6
	2.1.3	M87	8
	2.1.4	Imaging with Sparse Modeling	3
2.2	Revea	ling Nature of Accretion Flow	3
	2.2.1	General Objectives	3
	2.2.2	Sgr A* as the Nearest Accretion Flow	5
	2.2.3	Accretion flow of M87	0
	2.2.4	Low Luminosity AGNs	2
2.3	Under	standing Jet Formation Mechanism	7
	2.3.1	General Objectives	7
	2.3.2	On a possible jet in Sgr A [*]	8
	2.3.3	M 87 Jet	8
	2.3.4	Blazars	9
	2.3.5	Young radio Sources	5
	2.3.6	Narrow Line Seyfert 1 Galaxies	9
	2.3.7	Compact Symmetric Objects	1
2.4	Adva	ncing Maser Science	3
	2.4.1	General Objective	3
	2.4.2	Young Stellar Objects and Interstellar Matters	4
	2.4.3	Asymptotic Giant Branch Stars and Red Supergiants	6
	2.4.4	Megamaser in AGNs	7
	2.4.5	Galactic structure and astrometry	8

Experiences 230 GHz VLBI with EA stations

- 1. JCMT became stand alone station.
- 2. GLT started to participate EHT observations since 2018, and got fringes
- 3. SPART experiments have already demonstrated mm-VLBI feasibility of SPART telescope in 2015
- ⇒ We are ready to start regional coherent efforts to form 230/(86 GHz) array

Observations

The first EAVN -hi- test observations

- Date: 2019 March 18, 19
- Duration: UT11-18, 7 h each day
- Frequency range: 230200 232248 MHz*
- Stations: GLT-12m, SPART-10m, SNRAO-6m
- Sources: M87, 3C345, 1633+382, 3C371, 1928+738, N6251, Mrk501, CO2-1 sources for verification purpose
- Weather: Cloudy (SPART), Fine (GLT)

System Setup

	GLT 12 m	SRAO 6 m	SPART 10 m
SEFD	4 900 Jy	78 000 Jy	18 000 Jy
Start Freq.	230.200 GHz	230.200 GHz	230.200 GHz
Bandwidth	2 048 MHz	1 024 MHz	512 MHz
Polarization	Dual circular	Single circular	Single linear
Recorder	R2DBE Mark6	R2DBE Mark6	ADS3000+ OCTAVE

Preparation for each site

GLT

- ALMA-NA prototype 12 m

- 3 receivers (86, 230 and 345 GHz)
- 64 Gbps system with 4 x Mark6 + 4 x R2DBE

- Phase stability test for receiver with tone injection before and after the observations

ASD ~ 10⁻¹⁴ @ 1 sec

- Monitoring reference signal with respect to OCXO

ASD ~ 10⁻¹³ @ 1 - 10 sec

- Detection of Fringe for GMVA campaign 2019 (just after the EAVN -hi-)

Stability should be fine for GLT

Observations ~ -30 degree Wen-Ping Lo, Kevin Koay, and Keiichi Asada at the site

VLBI Observational Signal

R2DBEs at receiver cabin

Mark6s

RxA: Retired June 23, 2018

JCMT

Namakanui (GLT spare): Commissioning Diameter: 15m Location: Maunakea summit, Hawaii (3 receiver cartridge (86. 230, 345 GHz))

Editting by Izumi

The JCMT. Image Credit: William Montgomerie

JCMT

SPART 10 m Solar Planetary Atmosphere Research Telescope

- Operated by Osaka Prefecture University, Japan
- One of the antennas of the former Nobeyama Millimeter Array
- Normally observing solar planets and others at 230 GHz as a single dish
- VLBI system temporarily installed:
 - The system of Yamaguchi 32-m was disassembled and transported to SPART

SPART 10 m

- VLBI system installed in Shed 1
 - GPS antenna tied on a laundry pole
- Two coaxial cables connecting SPART and Shed 1, transporting the IF and 10 MHz signals

Two coaxial cables for transporting the IF signal and 10 MHz reference signal

SPART VLBI System

SPART Bandcharacteristics

SRAO

- Inaugurated: 2002
- Aperture: 6.1 m
- Sub-reflector: 61 cm
- Cassegrain focus
- 230-GHz band receiver
- Beam size: 45"
- Aperture efficiency: 49%

Image:

Workshop "mm-VLBI with SRAO" held in Sep. 2015. Participants from SNU, KASI, NAOJ, ASIAA, Yamaguchi U, Osaka Pref. U.

The new SRAO 230-GHz band receiver

- Previously at CARMA
- Frequency range: 215 265 GHz
- Bandwidth 1 GHz
- Left & right hand circular polarization
- Receiver temperature ~60 K

First VLBI run with SRAO March 18+19, 2019

Correlations

CorrelatorDiFX-2.6.1Post processingHOPS-3.20

SHAO DiFX correlator

Status of correlation

✓ Data transfer:

Diskpacks (GLT, SPART, arrived), Internet (SRAO, arriving)

✓ Pre-correlation:

Raw data format of each station (GLT, SPART) was confirmed with detections of CO-line spectrum data.

✓ Correlation:

Using ZOOM band to extract the same frequency bands from each station, GLT-SPART (512MHz), GLT-SRAO (1024MHz), SPART-SRAO (512MHZ)

Split the band into multiple 32MHz BW for larger delay search window and incoherent averaging.

Status of correlation

Limited SNR!

Coherent fringe search

90

6.5 вn

5.5

The first VLBI experiments at 230 GHz

That was a great first step for us, while no fringe were detected so far.

Contents for Discussion Session

Set up 1. Simple BH shadow case

Input image: Simple BH shadow model from Bubu

Noise:

Thermal Noise: Yes Systematic Noise: No BW: 2 GHz Duration: Full Track

(12° (EL) to 12° (EL))

Data: Generated with UVCON (AIPS) CLEAN: Difmap

All process done manually

GLT+JCMT+SPART+SRAO +PICO+NOEMA +ALMA+APEX +SMA+SMTO+LMT

GLT+JCMT+SPART+SRAO

GLT+JCMT+SPART+SRAO

+ALMA

+ALMA +SMTO

+ALMA +LMT

(mas) Relative Declination

0

+APEX +SMTO

	Peak [Jy/beam]	Rms [Jy/beam]	DR	chi2
GLT+JCMT+SPART+S RAO	0.118	0.00069	171	1.13
GLT+JCMT+SPART+S RAO+ALMA	0.118	0.00027	442	1.17
GLT+JCMT+SPART+S RAO+ALMA+SMTO	0.119	0.00045	264	1.14
GLT-JCMT-SPART- SRAO-APEX-SMTO	0.118	0.00049	243	1.13
GLT-JCMT-SPART- SRAO-APEX-LMT	0.118	0.00063	187	1.29
FULL	0.111	0.00027	407	1.25

1. Simple BH shadow case

Tentative summary for BH shadow imaging

(1). We need EAVN (GLT-JCMT-SPART-SRAO) + Chile + LMT or SMA

(2). ALMA may not be crucial for imaging

ó

ð

EAVN hi + ASTE (or ACA) + SMTO may be sufficient and flexible. 230.000 GHz 2000 Jan 01

0.04

0.06

0.08

0

Where are we?

The first VLBI experiments at 230 GHz

That was a great first step for us, while no fringe were detected so far.

No Fringes between GLT - SPART so far?

CO2-1 was detected with GLT and SPART -> sky signal is there

Two possibilities?:

- 1. Low sensitivity ?
- 2. Stability of system was not sufficient?

1. Low sensitivity?

SEFDs: GLT 5300, SPART 18000Jy

Effective BW: 512 MHz

Integration time: 10 sec

Fringe sensitivity: 965 mJy for 7 sigma (551 mJy for 4 sigma)

Could be challenging? Marginal even for strong QSOs.

2. Phase stability?

Let's check stabilities

- 1. Let's make sure the purity of reference signals with 1 Hz resolution
- 2. Let's try to conduct tone injection test
- 3. Let's make sure the stability of frequency standard

Points for discussions

How we can detect the first fringes

- Participation of JCMT
- Increase the BW from 512 to 2048 GHz
- Spend more time for QSOs, not for RGs
- Phase stability tests
- More challenges

How we can extend

- Participate to EHT with keeping regional efforts
- ACA/APEX? KVN?
- other stations? SMTO, KP, LMT?