JVN UPDATE

KENTA FUJISAWA (YAMAGUCHI UNIVERSITY), JVN COLLABORATION

• Collaboration
 • NAOJ (VERA)
 • Ibaraki, Tsukuba, Gifu, Osaka-Pref, Yamaguchi, Kagoshima universities
 • JAXA, NICT

• Specifications
 • 11 telescopes (11m ~ 64m)
 • 6~7 active telescopes
 • Baseline 50 - 2500 km
 • Frequency 6.7/8/22 GHz
 • Sensitivities (8 GHz, 2 Gbps) 3 mJy

• Operation
 • 200hr/yr, 30 observations/yr
 • Tomakomai 11m (Hokudai) stopped at 2016 March
 • Tsukuba 32m (GSI) stopped at 2017 January
 • Kashima 34m (NICT) stopped at 2019 September

Japanese VLBI Network (JVN)
TOPICS IN 2018 – 2019

- Contribution to EAVN: Ibaraki & Yamaguchi
 - Takahagi 32m (Ibaraki) will participate at 22 GHz
 - C-band test observation, under processing
 - Ibaraki & Yamaguchi will join EAVN C-band from 2020B

- Ibaraki – Yamaguchi – Kashima Observation
 - High sensitivity, No image
 - Fringe detection/survey mode
JVN OBSERVATION
2018 OCT – 2019 SEP

- Imaging Observation
 - Methanol maser imaging
 - EAVN test observation

- Ibaraki - Yamaguchi observation
 - High-z AGN (Furuya)
 - Extremely compact HII region (Motogi, Ogura)
 - Galactic compact sources
 - Flare star

<table>
<thead>
<tr>
<th>band</th>
<th># of obs.</th>
<th>Obs. time (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-band</td>
<td>42</td>
<td>130</td>
</tr>
<tr>
<td>X-band</td>
<td>50</td>
<td>268</td>
</tr>
<tr>
<td>Sum</td>
<td>92</td>
<td>398</td>
</tr>
</tbody>
</table>
IBARAKI – YAMAGUCHI OBSERVATION

- Detection VLBI
 - Ibaraki-Yamaguchi-Kashima
 - Non-imaging, fringe detection
 - 32/34m high sensitivity
 - A few mJy @ 6/8 GHz
 - Different baseline length
 - Source size / brightness
 - Long observation time
 - 200~300 hr/yr (up to 1000 hr in future)
 - Correlation by universities

Massive VLBI database construction for various class of radio source
IBARAKI-YAMAGUCHI-KASHIMA OBSERVATION

EXTREMELY COMPACT HII REGION SURVEY

(Motogi & Ogura)

- To find candidates of very first stage of high-mass star as extremely compact HII region
- VLBI survey of thermal object with $T_b \sim 10^4$ K
- Observation
 - Ibaraki – Kashima
 - 662 sources from CORNISH
 - 390 sources done
IBARAKI-YAMAGUCHI OBSERVATION

GAMMA-RAY EMITTING AGN SURVEY

• To find candidate AGNs in the field of Fermi unassociated γ-ray sources

• Observation
 • > 1000 sources in two years (2019 – 2020)
 • Ibaraki – Yamaguchi, X-band

• Pre-study
 • Fujinaga, Niinuma et al. (2016) PASJ, 68, 70
 • Surveyed gamma-ray unidentified 845 sources in the Fermi catalog
 • Found 28 new gamma-ray AGNs (→)

<table>
<thead>
<tr>
<th>2FGL name</th>
<th>Radio name</th>
<th>$F_{\nu,4}$ [mJy]</th>
<th>$F_{\nu,5}$ [mJy]</th>
<th>uv [MJ]</th>
<th>$T_B < 10^6\text{K}$</th>
<th>$\alpha_{1.4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2FGL J0226.1+0943</td>
<td>NVSS J022613+093726</td>
<td>374.6</td>
<td>64.7</td>
<td>20.5</td>
<td>16.02</td>
<td>0.98</td>
</tr>
<tr>
<td>2FGL J0227.7+2249</td>
<td>NVSS J022744+224834</td>
<td>45.6</td>
<td>56.2</td>
<td>18.6</td>
<td>11.46</td>
<td>-0.12</td>
</tr>
<tr>
<td>2FGL J0307.4+4915</td>
<td>NVSS J030727+491510</td>
<td>56.0</td>
<td>184.0</td>
<td>22.5</td>
<td>54.68</td>
<td>-0.66</td>
</tr>
<tr>
<td>2FGL J0600.9+3839</td>
<td>NVSS J060102+383828</td>
<td>704.0</td>
<td>90.5</td>
<td>22.0</td>
<td>25.83</td>
<td>1.14</td>
</tr>
<tr>
<td>2FGL J0723.9+2901</td>
<td>NVSS J072354+285930</td>
<td>36.3</td>
<td>60.5</td>
<td>22.2</td>
<td>17.59</td>
<td>-0.29</td>
</tr>
<tr>
<td>2FGL J1016.1+5600</td>
<td>NVSS J101544+555100</td>
<td>132.5</td>
<td>102.6</td>
<td>22.4</td>
<td>30.26</td>
<td>0.14</td>
</tr>
<tr>
<td>Fermi J1418+3541*</td>
<td>FIRST J141828.5+354249</td>
<td>49.33</td>
<td>77.3</td>
<td>18.0</td>
<td>14.74</td>
<td>-0.25</td>
</tr>
<tr>
<td>2FGL J1502.1+5548</td>
<td>FIRST J150229.04+555204</td>
<td>41.04</td>
<td>42.1</td>
<td>21.5</td>
<td>11.48</td>
<td>-0.01</td>
</tr>
<tr>
<td>2FGL J1548.3+1453</td>
<td>FIRST J154824.3+145702</td>
<td>24.21</td>
<td>32.8</td>
<td>21.8</td>
<td>9.17</td>
<td>-0.17</td>
</tr>
<tr>
<td>2FGL J1612.0+1403</td>
<td>FIRST J161137.8+141046</td>
<td>163.03</td>
<td>62.9</td>
<td>22.5</td>
<td>18.69</td>
<td>0.53</td>
</tr>
<tr>
<td>2FGL J1704.3+1235</td>
<td>NVSS J170409+123421</td>
<td>29.5</td>
<td>41.7</td>
<td>22.5</td>
<td>12.38</td>
<td>-0.19</td>
</tr>
<tr>
<td>2FGL J1738.9+8716</td>
<td>NVSS J173722+871744</td>
<td>61.3</td>
<td>27.7</td>
<td>22.2</td>
<td>8.02</td>
<td>0.44</td>
</tr>
<tr>
<td>2FGL J1835.4+1349</td>
<td>NVSS J183535+134853</td>
<td>205.5</td>
<td>83.9</td>
<td>21.1</td>
<td>21.99</td>
<td>0.50</td>
</tr>
<tr>
<td>2FGL J1844.3+1548</td>
<td>NVSS J184425+154646</td>
<td>83.5</td>
<td>63.1</td>
<td>20.8</td>
<td>15.40</td>
<td>0.16</td>
</tr>
<tr>
<td>2FGL J2107.8+3652</td>
<td>NVSS J210805+365526</td>
<td>75.0</td>
<td>60.7</td>
<td>20.8</td>
<td>15.43</td>
<td>0.12</td>
</tr>
</tbody>
</table>
SINGLE-DISH AND SHORT BASELINE INTERFEROMETER IN JVN

- Large-scale Single-Dish and VLBI Monitoring of 6.7 GHz methanol maser by Ibaraki University
- HR1099 (RS CVn type binary) monitoring with Hitachi – Takahagi Interferometer
- X-ray binary GRS1915+105 monitoring with Yamaguchi Interferometer
LARGE-SCALE SINGLE-DISH AND VLBI MONITORING OF 6.7 GHZ METHANOL MASER BY IBARAKI UNIVERSITY

• Goals
 • Mass accretion process of high-mass YSOs
 • At 1000au - 10au with theoretical background

• Method
 • To find new periodic sources by daily – monthly monitoring for 400 sources
 • To test if there is a Period-Luminosity relation for high-mass YSOs

New periodic source discovered at Ibaraki Period – Luminosity relation of HMYSOs
A serendipitous result

DISCOVERY OF AN ACCRETION BURST:
G358.93-00.03

THE ASTRONOMER'S TELEGRAM, NO. 12446, JANUARY 2019

- Bursting activity of the 6.668-GHz CH$_3$OH maser detected in G 358.93-00.03 using the Hitachi 32-m

- Sugiyama, K., Saito, Y., Yonekura, Y., Momose, M.
X-RAY BINARY GRS 1915+105 MONITORING BY MAXI (X-RAY) AND YAMAGUCHI INTERFEROMETER (RADIO)

- **Observation**
 - Yamaguchi Interferometer
 - 8 GHz (8192-8704 MHz)
 - Sensitivity ~5 mJy (5sigma)
 - Period 2019 Feb. to Sep.

- **Results**
 - Radio detection at quiet phase with flux density of ~5mJy
 - Radio flare of ~100mJy was detected after X-ray flare
 - Fast variability with timescale of a few hours
 - After X-ray became quiet, radio activity continues
SUMMARY

• Imaging Observation
 • C and X-bands steady observation
 • Participation to EAVN from 2020B
 • 100 hrs

• Ibaraki – Yamaguchi observation
 • Intensively doing to create a new field of VLBI

• Single-dish and short baseline interferometer
 • Ibaraki, Yamaguchi