Summary of KaVA/EAVN observations of M87 and Sgr A* in 2014-2018

M. Kino (NAOJ/KUTE) & BW Sohn (KASI) on behalf of EAVN AGN Science WG

EAVN Workshop 2019 Sep, at Ibaraki Univ

Grand challenge #1: solving jet formation mechanism

(c) EAVN Collaboration

EHT talks G. Bower (ASIAA) F. Tazaki (NAOJ)

To test *B*-driven jet model, we measure/constrain basic quantities of

velocity field
B-field
flow geometry

BZ process at work?

EAVN Workshop 2019

v-field, *B*-field, and flow geometry of M87 Park+ 2019 submitted Ro et al. in prep Cui et al. in prep

Longstanding problem:

"Is the M87 jet fast or slow in the collimation zone?"

Key to resolve the problem is **high cadence monitoring**, which can avoid misidentifications of the multiple jet components!

Park+ *submitted*

43GHz

The KaVA high-cadence (bi-weekly) monitoring in 2016 reveals the profile of M87's jet velocity field.

22GHz

Park+ submitted 1. Velocity stratification! 2. Discrepancy btw. observation and GRMHD?!

Ro+ in prep

Constraining *B*-field in M87 at 22/43GHz (2015-2016 data)

H. Ro will present new constraints on *B*-field properties via radial profile of the spectral index. Stay tuned!

Flow geometry at the jet base

• Unfortunately, EHT could not detect the jet emission in EHT 2017.

EHTC+ 2019, ApJL

EHTC's estimate of Position Angle (PA) of Forward Jet (FJ) via matching GRMHD snapshot to the photon ring

Cui+ in prep

EAVN measure the real jet PA in 2017 April

Cui+ in prep

From the EAVN data, we find that (1) wide jet-opening angle, and (2) EHTC estimates of PA_FJ reasonably agree with EAVN jet.

EAVN Workshop 2019

Probing real vicinity of SMBH Cho+ in prep (Zhao+ in prep)

Grand challenge #2: Unveiling accretion flow onto SMBH

minispiral at Gal. Center (VLA)

We are almost there. However, there is one serious issue.

VLA image (c) Lo Long standing problem: "Observed radio images of Sgr A* is dominated by interstellar scattering. So, an inference of Sgr A* image is sensitive to an assumed scattering model."

(c) Akiyama

Johnson+ 2018

KaVA 7mm data (2014 Nov) shows non-Gaussian and it significantly constrains scattering kernel.

Johnson+ 2018

The scattering parameters (α and r_in) are finally constrained very tightly!

So, using these parameters in Johnson +2018 we can remove the effect of the scattering and thus we can derive **intrinsic size of Sgr A*** in 2017.

Cho+ in prep EAVN observation of Sgr A* on 2017 April 3rd @ 22GHz

Cho+ *in prep*

Intrinsic size of Sgr A*!

From this, we can potentially constrain on geometry of Sgr A* and electron distribution in it.

EAVN workshop 2019

The array is in a transition phase from KaVA to EAVN. (i) Transverse motion of the M87 jet

(ii) Origin of flares in Sgr A*

Time allocated for initial phase of EAVN LP in 2019 Sep – 2020 Jan

Title	KaVA/EAVN AGN large program monitoring of SgrA : Phase II		
PI	Motoki Kino Ilje CHO and Guangyao ZHAO		
Related Proposal/Publication	EAVN19A-06		
Time Allocated	30 hours for KaVA, 18 hours for Tianma		

Title	Investigating the Transverse Oscillation of the M87 Jet with EAVN		
PI	Motoki Kino	Hyunwook RO	
Related Proposal/Publication	EAVN19A-06		
Time Allocated	49 hours for KaVA and Nanshan		

EAVN LP of investigating the transverse motion in M87

The timescale of a possible oscillation is one year scale. Hence, long term monitoring at 22 GHz is essential to characterize its properties. We can study on instabilities in the jet.

Do et al. (2019)

Significant IR flare activity in 2019

The elevated IR flare activity encourages EAVN LP monitoring of Sgr A*.

Do et al. (2019) says

- "The distribution of flux variations observed this year is significantly different than the historical distribution."
- "Potential physical origins of Sgr A*'s unprecedented brightness may be from <u>changes</u> <u>in the accretion-flow</u> as a result of the star So-2's closest passage to the black hole in 2018 <u>or from a</u> <u>delayed reaction to the approach of the dusty</u> <u>object G2 in 2014.</u>"

Summary of EAVN AGN Science WG activities

Paper drafting w/ KaVA Large Program data in 2014-2018

- ✓ Park+ 2019 submitted (M87 velocity field in 2016)
- ✓ Ro+ in prep (M87 magnetic field in 204-2016)
- ✓ Cui+ in prep (M87 jet PA in 2017-2018)
- ✓ Cho+ in prep (Sgr A* intrinsic size in 2017 April)
- ✓ Zhao+ in prep (Sgr A* intrinsic size in 2013-2016)

• Conducting initial phase EAVN LP in 2019B

- ✓ Transverse oscillation of the M87 jet
- ✓ Origin of significant flares in Sgr Å*

• Development/upgrade of EAVN

- ✓ KaVA/EAVN polarimetry (BW Sohn+, K. Hada+, J. Park)
- ✓ KaVA/EAVN phase-ref (J. Oh+)
- ✓ EATING VLBI (M. Giroletti+)
- ✓ EAVN-high (K. Asada+)