HI Observations of MaNGA Galaxies with the Green Bank Telescope

Presented by Nattida Samanso
National Astronomical Research Institute of Thailand
Introduction

Neutral hydrogen (HI)

Emits an observable radiation at 21 cm and is not absorbed throughout its path.

Image credit: Benjamin Winkel for the HI4PI collaboration (Argelander-Institut für Astronomie/Max-Planck-Institut für Radioastronomie)
Radio telescope

Green Bank Telescope (GBT): The largest fully steerable single dish in the world, 100 x 110 m
(c) National Radio Astronomy Observatory / Associated Universities, Inc. / National Science Foundation
Targets selection

- SDSS Data Release 13
- Stellar mass greater than 10^9 solar mass
- No pre-selection on galaxy type
- Average redshift of the sample is $z \approx 0.03$.

Mapping Nearby Galaxies at Apache Point Observatory
Methods

- GBT observations
- Perform quick inspection
- Remove GPS signal
- Perform a full reduction
- Measuring galaxy’s HI mass

HI detection justification

Data combination
- Removing RFI and smoothing data
- Baseline subtraction and Normalization
Measuring galaxy’s HI mass

- HI detected galaxy

\[
\frac{M_{HI}}{M_{\odot}} = 2.356 \times 10^5 \left(\frac{D_L}{Mpc} \right)^2 \left(\frac{F_{HI}}{Jy \cdot km/s} \right)
\]

(Roberts, 1962)

- HI non-detected galaxy

assuming rms in mJy

assuming a range of widths is equal 200 km/s

\[
\frac{F_{HI}}{Jy \cdot km/s} = rms \times \frac{width}{1000}
\]

(Masters et al, 2014)
Observational results

8568-12702

8568-12702

HI detection

Non-detection
Galaxy classification with HI Detection %

- Spirals: 62%
- Ellipticals: 21%
- Uncertain: 14%
- Lenticular: 3%

- Detected HI
- Non-Detected HI
Unexpected detection of HI gas in elliptical – supposedly “red and dead galaxies why?”

Velocity of HI (Km/s) vs. Flux (mJy)

7957-6103
- **Detection at**: 8524.91 km/s
- **Flux**: 0.020

8611-3704
- **Detection at**: 8733.81 km/s
- **Flux**: 0.006
Methods

HI detection justification + Photometric data (DRPall)

Color-magnitude diagram with HI detection

Absolute magnitude g-band, r-band

Plot g vs. g-r

Mark the detection and the non-detection galaxy
Color-Magnitude Diagram with HI Detection

Red sequence

Blue cloud

Redder

Bluer

Fainter

Brighter
Methods

HI detection justification + Photometric data (DRPall)

Separate a region

Calculate a detection fraction

Plot g vs. $g-r$

Mark the detection and the non-detection galaxy

Color-magnitude diagram with HI detection

Color-magnitude diagram with HI detection fraction

Detection fraction = \(\frac{\text{# of HI detected galaxies}}{\text{# of total observed galaxies}} \)
Methods

HI detection justification

Photometric data

HI mass

Separate a region

Calculate a HI gas fraction

Plot g vs. g-r

Color-magnitude diagram with HI gas fraction

HI gas fraction = \frac{\text{Average HI mass}}{\text{Average (MHI + stellar mass)}}
Active galaxy

Driving gas out and affect stars formation in galaxy

Image credit: NASA and The Hubble Heritage Team (STScI/AURA)
Methods

HI detection justification

+ Optical line flux data

Plot log \([\text{OIII}/\text{H}_\beta]\) vs. log \([\text{NII}/\text{H}_\alpha]\)

Baldwin-Phillips-Terlevich (BPT) diagram

\[
\log(\text{[OIII]/H}_\beta) = 0.61/\log(\text{[NII]/H}_\alpha) - 0.47 + 1.19 \quad (3.8)
\]

\[
\log(\text{[OIII]/H}_\beta) = 0.61/\log(\text{[NII]/H}_\alpha) - 0.05 + 1.3 \quad (3.9)
\]

Figure 3.2: Baldwin-Phillips-Terlevich (BPT) diagram
Image credit: Kewley et al. 2006
BPT Diagram with HI Detection, Ke01 and Ka03

Extreme starburst line

AGN
Galaxy classification with AGN Indication

- Spirals
- Ellipticals
- Uncertain
- Lenticular

AGN Indication

Galaxy classification with AGN Indication %

- Spirals
- Ellipticals
- Uncertain
- Lenticular

AGN Indication %
Color–Magnitude Diagram

Red sequence

No detection
Detection
AGN
Conclusions

Spiral galaxy \rightarrow normally HI detected galaxy

Elliptical galaxy \rightarrow normally HI non-detected galaxy

The incidence of AGN \rightarrow HI gas properties.

Most of AGN found in the red sequence
Acknowledgements

Project advisor
Wiphu Rujopakarn, Ph.D.

Collaborators
Karen Masters, Ph.D. and David V. Stark, Ph.D.