

Structure and Kinematics of the Galactic Spiral Arms and Warp

Nobuyuki Sakai (NAOJ), VERA and BeSSeL projects member

nsakai@kasi.re.jkr

(1) Context

2 VLBA & VERA Observations

2000s: VLBI astrometry

VLBA BeSSeL project observations until 2016

Band: 6.668519 GHz **Target:** CH₃OH masers (HMSFRs) Cadence: 4 epochs in 1yr **Velocity Spacing:** 0.36 km s⁻¹

Polarization: LHCP & RHCP

a VLBA Key Science Project

2010s: Optical astrometry

2020-30s: IR astrometry

Recording rate: 512 Mbps

VERA project observations until 2021

Astrometric observation is an only way to derive 6D phase information of the astronomical object. The 6D phase information can be crucial for resolving a wide variety of astronomical mysteries. Indeed, VLBI astrometric results have drastically improved our understanding of the Galactic structure (e.g., Reid+09; Honma+12; Reid+14).

From 2000s to 2030s, VLBI, Optical, and IR astrometric observations are available (see the upper figures), which allow us to tackle a wide variety of astronomical mysteries.

Band: 22.23508 GHz **Target:** H₂O masers (SFRs) **Cadence:** Bimonthly observations **Velocity Spacing:** 0.42 km s⁻¹ **Polarization:** LHCP **Recording rate:** 1 Gbps

3-2 Fingerprint of a satellite galaxy ?

 \rightarrow (Non-circular motion): Observables – Solar motion – Rotation curve

Distance perpendicular to the Perseus arm (kpc)