Studies on Evolved Stars Using KVN

The 12th East Asian VLBI Workshop September 23-27, 2019, Ibaraki University, Mito, Ibaraki, Japan

Se-Hyung Cho^{1,2}, Youngjoo Yun¹, Dong-Hwan Yoon¹, Haneul Yang^{1,2}, Jaeheon Kim³, Dong-Jin Kim⁴, Richard Dodson⁵, Maria **Rioja⁵ and Hiroshi Imai⁶**

¹KASI, ²Seoul Nat. Univ., ³Chungbuk Nat. Univ., ⁴MPI, ⁵ICRAR, ⁶Kagoshima Univ.

Abstract

At the commissioning phase of KVN from 2009 to 2013, single dish survey performed toward about 1000 evolved stars and monitoring observations also toward about 60 relatively strong SiO and H₂O maser sources. Based on these single dish results and VLBI feasibility test observations at K/Q/W/D bands in 2014, KVN Key Science Project (KSP) centered on VLBI observations has started from 2015 and will be completed in 2019 as phase I. Here we report the overview of studies on evolved stars using KVN. In KSP phase I, we have focused on nine KSP sources which show a successful astrometrically registered maps of SiO and H₂O masers using the Source Frequency Phase Referencing (SFPR) method. We aim at investigating the spatial structure and dynamical effect from 43/42/86/129 GHz SiO to 22 GHz H₂O maser regions associated with a stellar pulsation and development of asymmetry in circumstellar envelopes.

Introduction

Observational Results

Successful SFPR maps of H₂O and SiO masers were obtained from KSP 9 stars : VX Sgr, VY CMa, IK Tau, R Crt, W Hya, V1111 Oph, V627 Cas, V5102 Sgr, WX Psc.

- The maser emission plays an important role for investigating the atmosphere and envelope of the central stars according to their different chemical and excitation conditions. It is important to perform simultaneous observations of both SiO and H₂O masers because their spatial distributions may be connected from the innermost region to the radially accelerating region of the circumstellar envelope.
- The Korean VLBI Network (KVN) equipping a simultaneous observation system of 22/43/86/129 GHz bands enables us to combined studies of SiO and H₂O masers. We have performed single dish survey at commissioning phase of KVN and the Key Science Project of evolved stars since 2015A (SH Cho et al. 2018).
- As a science goal, (1) we aim at investigating the spatial structure and dynamical effect from SiO to 22 GHz H₂O maser regions and the development of asymmetry via dust formation layer according to stellar pulsation. (2) Combined models of SiO and H_2O masers will be studied.
- (3) The correlation and difference of SiO maser properties among J=1-0, J=2-1, and J=3-2 masers are investigated for constraining SiO pumping models.

Observations and Data Reduction

Target Sources for KVN Single Dish and VLBI Obs.

IRAS tw	o colo	or dia	gram for S	968 evolved stars	s
					All Detected SiO-only Detected
	•	LI	VIII		\blacktriangle H ₂ O-only Detected
2 -				i /	All Undetected

No	Objects	No of Obs	2015	2016	2017	2018	2019A
1	IK Tau	41	5/7	5/8	11/11	4/8	3/7
2	VY CMa	45	8/10	10/11	6/9	4/9	2/6
3	VX Sgr	34	3/6	7/9	6/8	4/9	2/2, Fin
4	R Crt	11	8/8	3/3	Fin	Fin	Fin
5	V1111 Oph	35	7/8	3/4	8/9	1/8	3/6
6	W Hya	38	3/5	7/10	7/8	2/9	4/6
7	V627 Cas	34	5/5	4/4	8/9	2/9	1/7
8	V5102 Sgr	24	3/4	2/2	8/9	8/8	1/1, Fin
9	WX Psc	31	1/2	5/6	6/8	6/8	4/7
10	X Cyg	25	1/1	1/3	6/8	2/8	1/5

VX Sgr: (Left) NE-SW transformations appeared from 2017 Feb. which shows the shortest period, 517 days (green box in the light curve). < probably caused by the variations of pulsation motion (Right) Variation of SiO ring radius with optical light curve. O Ring radius of 129 GHz maser increases near optical max. ► Radiative pumping is dominant.

4 Band SFPR Maps (Movie) of H₂O and SiO Masers toward VY CMa

Number of monitoring obs. & obs. success rate

KVN Single Dish and VLBI Monitoring Obs.

- Single dish survey toward ~1000 stars from 2009 : SRs, Miras, SGs, OH/IR stars (252), Post-AGB stars (182), Symbiotic stars
- Single dish monitoring toward about 10-15 strong SiO and H₂O maser sources together with VLBI every 1-3 months regularly
- VLBI monitoring focused on 10 successful SFPR objects
- Obs. lines : H₂O 6₁₆-5₂₃, SiO v=1, 2, J=1-0, v=1, J=2-1, & v=1, J=3-2
- KVN home page > http://radio.kasi.re.kr/kvn/kvn.php
- Source Frequency Phase Referencing (SFPR) technique (Dodson et al. 2014) and SFPR pipeline (2019 YJ Yun) were adopted.

Observational Results

Summary of KVN Single Dish Observations

Both SiO and H₂O masers are detected from a large number of AGB stars

and SiO maser movies for 8 epochs. The SiO movies show an elliptical pulsation motions (NE-SW pulsation motion).

Semiregular b-Type Variable R Crt : P~160 days

Ring size of SiO v=1, J=2-1maser in R Crt is smaller than that of v=1, J=1-0 different from known results (DJ Kim et al. 2018).

OH/IR star: WX Psc, V1111 Oph ► YJ Yun's presentation

Symbiotic star: V627 Cas ► HN Yang's pres.

(SR, Mira, SG: 188/401, OH/IR: 50/252) at one-epoch obs. A Both H₂O & SiO masers are detected from known SiO-only and H₂O-only detected sources (Kim et al. 2010, 2013, Cho et al. 2012).

Intensity variations of SiO and H₂O masers show similar patterns for several stars (Ref: H₂O) maser maximum are scattered in the range of phase, 0.7~1.5; Shintani et al. 2008) (Kim et al. 2014).

SiO maser intensities are stronger than H₂O maser in most evolved stars and at most optical phases. However, peak intensities of H₂O are stronger than those of SiO around maximum phases in several stars (Kim et al. 2014).

FWZP of SiO maser shows a similar value in both Mira variables and OH/IR stars, while FWZP of H₂O maser is large in OH/IR stars compared with that in Mira variables (Kim et al. 2012, 2014, Cho et al. 2017).

 \blacksquare One-way, double peaks of H₂O masers, and SiO v=2-only masers appear at late stage of AGB evolution and at post-AGB stage (Yoon et al. 2014, Cho et al. 2017).

Different detection rates between SiO and H_2O masers at post-AGB stage (Yoon et al. 2014).

HN Yang et al. ApJL in Prep.

We investigated that the variations of H₂O & SiO masers are associated with the orbital motion of hot companion.

Discussion and Future Works

What is the development process for changing from ring (elliptical)-like structure of SiO masers to highly asymmetric structure of H₂O maser via dust formation layer including the transformations of SiO ring-like structure ? Differences of pumping mechanism among SiO masers.
Completion of movies and polarization obs. • Hydrodynamical model combining SiO and H₂O maser propagation < Gray et al. 2009

References

Gray et al. 2009, MNRAS, 394, 51 Cho et al. 2018, Proceedings IAU Sym. 336 Dodson et al. 2014, AJ, 148, 97 Yoon et al. 2014, ApJS, 211, 15