KaVA Large Program for *High-Mass* Star-Formation

Tomoya Hirota (NAOJ) and Kee-Tae Kim (KASI) On behalf of SFRs WG

Organization

- Co-Pl
 - T. Hirota (NAOJ) and K. T. Kim (KASI)
- Core members ~ 17, including 3 students
 - D. Y. Byun, J. O. Chibueze, K. Hachisuka, B. Hu, E. Hwang,
 J. Hwang, J. H. Kang, J. Kim, J. S. Kim, M. K. Kim, T. Liu,
 N. Matsumoto, K. Motogi, C. S. Oh, K. Sugiyama, K. Sunada,
 Y. W. Wu (~17, including 3 students)
- Other members ~ 40
- Regular skype meeting since 2011; **100th on Sep. 23**
- New members and collaborator are always welcome!

KaVA SFRs LP

- Understanding high-mass star formation through KaVA observations of water and methanol masers
 - Statistical VLBI monitoring/survey to reveal 3D velocity and spatial structures of 22GHz H₂O/44GHz CH₃OH masers associated with high-mass young stellar objects (HM-YSOs)

6.7 GHz Class II CH₃OH masers; disk, toroid or outflow (Bartkiewicz+2016)

22 GHz H₂O masers; high-velocity outflow and jet (Goddi+2017)

44 GHz Class I CH₃OH masers; lowvelocity outflow (Cyganowski+2009)

10" ~ 0.20 pc

Why star-formation studies?

- Direct link to planet formation
 - Origin of Solar system, Earth, and life
- In case of low-mass stars
 - Well established based on observational studies
 - Theoretically interpreted

What about high-mass stars?

- How high mass (HM)?
 - Early B (B3 and earlier) and O stars
 - More massive than $8M_{Sun}$
 - More luminous than $10^3 L_{Sun}$
- Significant impacts on astronomy, astrophysics, and astrochemistry
 - Influences on surroundings by strong UV, wind, explosion, ...

ALMA (ESO/NAOJ/NRAO). Visible light image: the NASA/ESA Hubble Space Telescope

Why HM-YSOs still necessary?

- Less understood in comparison with low-mass YSOs
 - Still challenging due to rarer population, short lifetime, further distances, and complicated structures in embedded clusters
 - There are unresolved issues such as initial condition, accretion process, feedback process, initial mass function, first star in the Universe, etc.

Recent progress in observations

- Evidence of disk/outflow system with 10-10⁴ AU
 - At a few 10 mas resolution with the long baseline with ALMA
 - But 3D velocity structure is unavailable (except full ALMA)
 - Still insufficient number of targets at high resolution
 - VLBI will play unique roles to resolve dynamical structures

Face-on disk in G353.273+0.641 (Motogi et al. 2019)

Keplerian disk in G17.64+0.14 traced by vibrationally excited H2O line (Maud et al. 2019)

Science goals

- 3D dynamical structures of disks/outflows system traced by multiple masers
 - Achievable only by using VLBI through proper motion measurements

Matsuhita et al. (2017, 2018)

RA offset [mas]

RA offset [maALMA band 8 observations of SiO and H2O lines (Hirota+2017)

Science goals

- Evolutionary scenario of high-mass star-forming regions and their dynamical structures
 - Need statistical samples
 - Similar studies are in progress (Moscadelli et al. 2016, Sanna et al. 2018), but they are complementary with each other

Evolution of outflow (Beuther & Shepherd 2005) Temporal variation of outflow in W75N (Kim. J. S. et al. 2013)

Science goals

- Evolutionary scenario of high-mass star-forming regions and their dynamical structures
 - Need statistical samples
 - Similar studies are in progress (Moscadelli et al. 2016, Sanna et al. 2018), but they are complementary with each other

Our tracers

- Centimeter/millimeter maser lines
 - 22 GHz H_2O ; high-velocity jet/outflow
 - 6.7 GHz CH₃OH; low-velocity outflow/disk
 - 44 GHz CH₃OH; low-velocity outflow
 - Complementary with each other;

G353.273+0.641 (Motogi et al. 2016); H2O masers tracing high velocity (~100 km/s) jet

G6.79-0.25 (Sugiyama et al. 2015); 6.7 GHz Class II CH3OH masers Associated with rotating disk

G18.34+1,78SW (Matsumoto+2014); 44 GHz Class I CH₃OH masers distributed in low-velocity outflow

Follow-up observations

- All are complementary to KaVA results
 - VERA astrometry (Mikyoung Kim and Jugha Kim)
 - ALMA cycle 3 (PI: Mikyoung Kim, and others)
 - ALMA cycle 6 (PI: Jungha Kim)
 - VLA 2020A (PI: Kee-Tae Kim)
 - JVN (PI: <mark>Sugiyama</mark>)
 - JCMT and ASTE SD (PI: Tie Liu)

6.7GHz methanol masers (JVN) Annual parallax (VERA)

Thermal continuum/lines

Radio continuum/methanol masers

Large-scale structure

Timeline

- First year (2016-2017)
 - Snap-shot survey of 25 H₂O masers at 22 GHz
 - Snap-shot survey of 19 CH₃OH masers at 44 GHz
 - Selected from SD/archive data, KVN SD/fringe-check
- Second year (2018-2019)
 - Monitoring of selected 16 H₂O masers at 22 GHz
 - Monitoring of selected 3 CH₃OH masers at 44 GHz
 - Selected from 1st year and VERA archive data
- Third year and beyond (2020-)
 - Further sources, intensive monitoring, other sciences (TBD)?

Second year; monitoring of selected sources

- Finished in last May
 - 16 H₂O masers
 - 3 CH₃OH masers
 - 4 epochs monitoring
 with 2 month interval
 - Additional observations in 2019B for 3 H₂O and 3 CH₃OH masers
- Publication plan
 - Some individual studies including the previous data
 - Summary (survey) papers

	H2O masers	Hirota
1	G13.87	Motogi
1	G10.62	Jungha
1	G45.07	
1	G25.82	Jungha, Giseon
2	G19.61	Eodam, Giseon
2	G34.24 G34.26	Byun
2	IRAS18018	
2	G30.82	Jungha
3	G354.61	
3	G351.24	Motogi
3	G0.54/RCW142	
3	IRAS18018	
4	IRAS18056	Jungha
4	IRAS20198	
4	G049.49	Eodam, Giseon
4	W51D	Eodam
	G12.88	
	IRAS18556	
	IRAS18094	
	G18.34SW	Burns
	CH3OH masers	Kee-Tae, Sugiyama
	G357.967	
	G18.34SW	Burns
	G049.49	

Survey results

- Imaging of H₂O maser sources (Hirota et al.)
 - Script for maser identification, proper motion fitting, plotting maser maps and proper motion vectors almost ready
 - To be compared with ALMA (waiting for allocation) and JVLA (proposal submitted) data

Some examples of case studies

- KaVA+ALMA for G25.82-0.17 (Kim, J. et al. submitted)
 - Cycle 3 for CH₃OH samples (Mikyoung Kim)
 - Cycle 6 for H₂O samples (Jungha Kim)
 - Direct comparison of spatial/velocity structure by filling the gaps of sparse maser distributions

Some examples of case studies

- KaVA imaging of G19.61-0.23 (Hwang, E. et al. in prep.)
 - Analyzed by currently developing "Parsel-Tongue" script
 - Imaging of extended maser features will become easier (e.g. 100 mas FoV in 1"x1" regions for 100 channels correspond to 10000 images!)

See talks by Eodam Hwang

Possible future plan

- Collaboration with Maser Monitoring Organization (M2O)
 - Since 2017 September in IAUS 336 "Astrophysical masers"
 - ToO VLBI observations based on systematic SD monitoring
 - Follow-up observations (e.g. ALMA DDT approved yesterday)
 - Catching accretion burst events in high-mass YSOs

See talks by Ross burns and Kitiyanee Asanok and poster by Koichiro Sugiyama

Possible future plan

- EAVN LP for C-band methanol masers (Sugiyama et al.)
 - Complementary with H_2O and 44 GHz methanol masers

KVN

Yamaguchi 32 m

Nanshan 26 m

TNRT40

CVN

20XX semester ??

The East-Asian VI Network

(Image Credit: Reto Stöckli, NASA Earth Observatory)

Hitachi 32 m ©NAOJ

VERA JVN C-band EAVN

(by Sugiyama)

Summary and future

- KaVA LPs have started since 2016
 - Monitoring observations will be completed in 2019B
 - Data analysis are still on-going
 - Follow-up observations are carried out using VERA, ALMA, etc.
- Future EAVN LP will be discussed until 2020B
 - EAVN imaging of 6.7 GHz methanol masers will be complementary to the current KaVA LP
 - Time-domain maser studies under collaboration with M2O will be a key for understanding of accretion processes in HM-YSOs
 - Possible new sciences with polarimetry and astrometry
- New members/collaboration for EAVN LP are welcome