

岐阜大学大学院 自然科学技術研究科 宇宙科学研究室 内田 千尋

電波ジェット

図1: クェーサー3C 175の電波画像 *Bridel et al.(1994)

- •活動銀河核(AGN)からほぼ光速度で双方向に放出されている プラズマの噴流
- コアの中心部には巨大ブラックホールが存在していると考えられているが、詳細な構造や物理パラメータはまだ十分に理解されていない。

電波ジェットの相対論的ビーミング効果

Approaching JetはCounter Jetに比べて、 1明るい 2長い 特徴を持つ。 これらはジェットが相対論的速度を持つこ とが起因する。

図1:クェーサー3C 175の電波画像 *Bridel et al.(1994)

本来のジェットの構造が双方向に等しいと仮定すれば、

電波強度の関係式 $F_{\nu}(\nu) = \delta^{3+\alpha} F'_{\nu'}(\nu)$ δ Approaching Jet/Counter Jetの長さ比 H 初線角度 θ

を求めることができる。

・電波強度の関係式 $F_{\nu}(\nu) = \delta^{3+\alpha} F'_{\nu'}(\nu)$ (1) $F_{\nu}: 観測系 F'_{\nu}: 静止系$

 α : Spectral Index

• ドップラーファクターる
$$\delta = [\gamma(1 - \beta \cos \theta)]^{-1} \quad (2)$$

γ:ローレンツファクター

ジェットの速度βcと視線角度θの関数 相対論的効果を示す指標

図2: C.Megan et al.(1995) Fig.20

 $\gamma = 10 ~(\beta = 0.995)$, $\theta = 10^{\circ}$ のとき $\delta \doteqdot 5$

本来のジェットの電波強度に比べて Approaching Jet:約125倍 Counter Jet:約1.25×10⁻⁴倍 になる。 長さの比 H

Approaching JetとCounter Jetの速度、傾きは等しいと仮定する。

t = 0でコアから速度vで双方向にプラズマが放射された。時刻 t_2 では $r_2 = vt_2$ に到達する。

図3:時刻*t*2におけるジェットの様子

Approaching Jet側で時刻t₂で放射された光 が観測者に届いたとき、Counter jet側の光 は届いていない。

図4: Approaching JetとCounter Jetの光行路の違い

このとき、観測者に届くCounter Jet側は時刻t₁(<t₂) で放射された光である。つまり、Counter Jet **x**₁は Approaching Jet **x**₂よりも短く観測される。

Approaching JetとCounter Jet の光行路差 $(\beta, \theta) = (0.995, 10^{\circ})$ のとき H=98 となる。

目的と方法

ジェットの性質に関わる $\beta と \theta を定量的に求める手法の$ 確立を目的とする。

- 双方向に吹き出す電波ジェットの構造が等しいと仮定する。
- ・様々な(β,θ)から、相対論的ビーミング効果の影響 を計算する。
- ・観測データ(F,H)に最もよく合う(β,θ)を求める。

グラフ1:NGC 4261 1次元電波強度グラフ

*¹Tonry et al.(2000) *²Ferarese et al.(1996) *³ Haga et al(2013)

吸収領域の削除

図6: Haga et al.(2013) Fig3 1-2GHzのSpectral index Map 中心付近は<mark>吸収</mark>の強い領域見られる.

コアからCounter Jet側に8mas ($\alpha \ge 1.5$) 吸収領域とする。($S \propto \nu^{\alpha}$)

相対論ビーミング効果以外の影響なので、データから削除した。

グラフ2:吸収領域を削除したNGC 4261

NGC 4261はビーミング効果があま り効いていないので、 1 ≤ *δ* ≤ 1.1

となるような β , θ を選んだ。

- $(\beta, \theta) = (0.575, 71^{\circ}) \Rightarrow \delta = 1.007$ H = 1.5
- 一致部分は少ないが、全体的に構造が似ている。
- 近似直線の傾き a=1.17

グラフ6: $(\beta, \theta) = (0.575, 71°)$ で与えられる相対論的ビーミング効果で観測データを補正したグラフ

別条件での様子

グラフ7: $(\beta, \theta) = (0.600, 70^{\circ})$ で与えられる相対論的ビーミング効果で 観測データを補正したグラフ

 $(\beta, \theta) = (0.60, 70^{\circ})$ $\delta = 1.007$ H=1.5 a=0.91 グラフ7:(β , θ)=(0.525,73°)で与えられる相対論的ビーミング効果で 観測データを補正したグラフ

$$(\beta, \theta) = (0.525,73^{\circ})$$

 $\delta = 1.005$ H=1.4
a=1.50

 $0.525 \le \beta \le 0.600$ $71^{\circ} \le \theta \le 73^{\circ}$

の条件において大まかなApproaching Jetと Counter jetの構造の大まかな一致が確認でき た。

Piner(2001):ジェットの運動より、

 $(\beta, \theta) = (0.45 \pm 0.02, 63 \pm 3^{\circ})$

しかし、明らかに構造が異なる部分も確認で きる。これは中心付近の吸収の影響が残って いるからだと考えられる。

図7:Piner et al.(2001) Fig.4 19990226~19991021でジェットの運動をモニ ターしたグラフ

• 中心付近の吸収領域の検討

Spectral index $\alpha \ge 1.5$ よりも吸収領域を拡大する。たとえば、 $\alpha \ge 1$ の領域を吸収領域と指定すると、Counter Jet側の データを15mas程度削除することになる。

•1.4GHzのより吸収の少ない高周波での研究

NGC 4261は多周波数観測されている。2.3, 5.0, 8.3, 15GHz では2side-jetが確認できている。この 4 つの周波数において 同様の条件での研究を行う。

- Unified Schemes for Radio-Loud Active Galactic Nuclei (C.MEGAN URRY, 1995)
- The core sift measurements for two-sided jet affected by Free-Free absorption using VLBA (Takafumi Haga, 2013)
- ORIENTATION AND SPEED OF THE PARSEC-SCALE JET IN NGC 4261(3C 270) (B. Glenn Piner,2001)

Approaching JetとCounter Jetの長さの比 H の導出

Approaching Jet側で $r_2 = vt_2$ に到達したプラズマが観測者に向けて光を放射したとする

この光が観測されたとき、Counter Jetから届く光は時刻*t*₂ で放射された光ではない。なぜなら、Counter Jetは観測者 から離れていくジェットなので、Approaching Jetに比べて 光の進む距離が長くなるからである。(A,B)

このとき、Counter Jet側で観測されるのは時刻 $t_1(< t_2)$ で放射された光で、距離 $c(t_2 - t_1)$ 長い行路を進む。(C)

ジェットは視線角度
$$\theta$$
 傾いているので、

$$\cos \theta = \frac{c(t_2 - t_1)}{r_2 + r_1} = \frac{c(t_2 - t_1)}{v(t_2 + t_1)} \iff \beta \cos \theta = \frac{t_2 - t_1}{t_2 + t_1}$$
ここで、距離 x_1, x_2 比をHとおく。

$$H = \frac{x_2}{x_1} = \frac{r_2 \sin \theta}{r_1 \sin \theta} = \frac{vt_2}{vt_1} = \frac{t_2}{t_1}$$
つまり、

$$\beta \cos \theta = \frac{H - 1}{H + 1} \iff H = \frac{1 + \beta \cos \theta}{1 - \beta \cos \theta}$$

t = 0でcentral engineから速度vで双方向にプ ラズマの塊が放出されたとする。時間t秒後に は、距離r = vtに到達する

NGC 4261において43HGzコアに収束する様子

• Haga et al (2013)より、

NGC 4261のコアは周波数が大きくなる につれて43GHzコアに近づく。

無限大の周波数では43GHzコアから、 82±16 μ as離れている位置に漸近する。

⊠8 : Haga (2013) Fig1

Search範囲の結果

β	θ	δ	Н	а
0.300	80	1.006	1.11	2.98
0.450	75	1.011	1.26	1.78
0.500	74	1.004	1.32	1.68
0.525	73	1.005	1.36	1.53
0.550	72	1.006	1.41	1.33
0.575	71	1.007	1.46	1.17
0.600	70	1.007	1.52	0.91
0.650	65	1.048	1.76	0.54
0.750	60	1.058	2.20	0.23
0.850	55	1.028	2.90	0.09
0.900	50	1.034	3.76	0.02

本研究の手法におけるPiner(2001)の検証

- Piner et al. (2001) \sharp ϑ ,
- $(\beta, \theta) = (0.46, 63^{\circ})$
- $\Rightarrow \delta = 1.12$ H=1.5
- 一致部分は少ないが、全体的な構造が似ている。
- 近似直線の傾き a=0.99

β,θの組み合わせは異なるが、(β,θ)=
 (0.575,71°)の条件と似た構造になった。

