Rotation Curve of M33 Explained by Dark Matter Disc

Toshio FUKUSHIMA (NAOJ)

ResearchGate Fukushima Click

To Appear in MNRAS

Spiral Galaxy M33 (Messier 33)

Suprime-Cam (B, V, Hα) January 22, 2009

Subaru Telescope, National Astronomical Observatory of Japan Copyright © 2009 National Astronomical Observatory of Japan. All rights reserved.

Spiral Galaxy M33

Triangulum Galaxy = NGC598

- 3rd Largest Member of Local Group
- Companion to M31 (Andromeda Galaxy)
- Size: 10 kpc radius
- Mass: [6 (stars) + 3 (gas)] x 10⁹ M_{sun}
- Spiral with No Core/Bulge
- Rising? Rotation Curve

Rotation Curve: M33

Rotation Curve of M33

Stars Disc of M33

2 parts
Power
& Exp
Exp.

Gas Disc of M33

2 parts
 Double
 Power
 Single
 Power

Piecewise Density F.

No Existing Formulation is Applicable

- Infinite) Exponential Disc Model
- (Infinite) Power-Law Disc Model, ...
- Demand for Gravitational Field Computation of General Thin Disc
 - Arbitrary Size and Shape (Finite, Hole, ...)
 - Arbitrary Density F. (Double-Power, ...)
 - @ Arbitrary Point

New Method of Grav. Field Computation

- Assumptions
 - Axisymmetric, Infinitely-Thin, Piecewise
- Strategy
 - Potential: Numerical Integration of Ring P.
 - Acceleration: Numerical Differentiation
- Integral Expression

$$\Phi(R,z) = \sum_{j=1}^{J} \Phi_j(R,z) \quad \Phi_j(R,z) = \int_{R_{j-1}}^{R_j} \Psi(R';R,z) dR'$$

Integrand Expression

Ring Potential (Kellogg 1929)

$$\Psi(R';R,z) = \frac{-4G\Sigma(R')K(m(R';R,z))R'}{P(R';R,z)}$$

$$m(R';R,z) \equiv \frac{4RR'}{\left[P(R';R,z)\right]^2}$$

$$P(R';R,z) \equiv \sqrt{(R'+R)^2 + z^2}$$

K(m): Complete Elliptic Integral of 1st Kind
 Fukushima (2015): Precise and Fast Comp.

Singularity Problem

- Blow-Up Logarithmic Singularity of K(m)
- Integrable in Principle, but ...
- Happens if m=1
 - When R=R' & z=0: Somewhere inside Disc
- Troublesome Even if m~1
 - Sharp Peak of Integrand

Split Quadrature

Splitting Integration Interval at Peak

$$\Phi_{j}(R,z) = \int_{R_{j-1}}^{R} \Psi(R';R,z) dR' + \int_{R}^{R_{j}} \Psi(R';R,z) dR'$$

- Double Exponential Quadrature Rule
 - Takahashi & Mori (1973)
 - Program: intde & intdei (Ooura 2006)
- Simple but Works
 - Fukushima (2014)

Acceleration Vector

• Definition $\mathbf{A} = A_R \mathbf{e}_R + A_z \mathbf{e}_z$

$$A_{R} \equiv -\left(\frac{\partial \Phi(R,z)}{\partial R}\right), A_{z} \equiv -\left(\frac{\partial \Phi(R,z)}{\partial z}\right)$$

- Numerical Differentiation
 - Primitive but Works
 - Somewhat Costly and Inaccurate
- Ridder's Method (Ridder 1982)
 - Program: dfridr (Numerical Recipe in F77)

Numerical Tools

- Complete Elliptic Integral, K(m): ceik
 - Fukushima (2015)
 - https://www.researchgate.net/profile/Toshio_Fukushima/
- Numerical Quadrature: intde
 - Ooura (2006)
 - http://www.kurims.kyoto-u.ac.jp/ooura/intde.html
- Numerical Differentiation: dfridr
 - Press et al. (1992, Sect. 5.7)
 - http://apps.nrbook.com/fortran/index.html

Validation

Test 1: Finite Uniform Disc

- Durand (1953), Fukushima (2010)
- Complete Elliptic Integrals of 1st and 3rd Kind
- Test 2: Infinite Exponential Disc
 - Freeman (1970)
 - Modified Bessel Functions
- Check: Rotation Curve Computation
- Confirmed 11-12 Digits Accuracy

Rotation Curve Error: Finite Uniform Disc

Rotation Curve Error: Exponential Disc

Case 1: Finite Power-Law Disc

Power-Law Density Profile Results Almost **Power-Law** Rotation Curve

Power-Law Index Relation

Only Approximate Relation

Edge Softening of Density Function

Edge Softened Rotation Curve

Case 2: Double Power-Law Disc

 Hinted from Generalized Three-Dimensional Volume Mass Density Model (Zhao, 1996, MNRAS)

$$\Sigma(R) \equiv \Sigma_0 (R/R_S)^{-c} \left[1 + (R/R_S)^{1/a} \right]^{(c-b)a}$$

- Inner Power-Law Index: c
- Outer Power-Law Index: b
- Curvature of Transition Zone: 1/a

Inner Power-Law Index Dependence

Outer Power-Law Index Dependence

Rotation Curve: Double Power-Law Disc

Curvature Index Dependence

Case 3: Exponentially-Damped Power-Law

Case 4: Sine-Modulated Exponential Disc

Descarte's Doubt Method

- Descarte (1641)
- 4 Steps Method

- I. Accept Only Info You Know to be True
- 2. Break Down Truths into Smaller Units
- 3. Solve Simplest Problems First
- 4. Make Complete List of Other Problems

Application to Rotation Curve of M33

- I. Accept Only Info You Know to be True
- Rotation Curve, Luminosity Profile
 - 2. Break Down Truths into Smaller Units
- Inner, and Outer Parts of Rotation Curve
 - 3. Solve Simplest Problems First
- Only Disc Mass Component
 - 4. Make Complete List of Other Problems
- Non-Axisymmetric Feature, ...

Standard Approach

Deconvolution Method

- M33: Corbelli et al. (2014)
- Milky Way: Sofue (2015)
- I. Compute V(R) of Stars and Gas
- 2. Subtract them from Rotation Curve
- Fit Spherically-Symmetric Model of Dark Matter Distribution to Residuals
 - Navarro, Frenk, White (NFW) (1996)

Stars & Gas Density Models

- Two-Piece Models for Stars and Gas
- Stars
 - Inner
 - Outer

Gas

Inner

Outer Σ

$$\Sigma(R) = \Sigma_A (R/R_A)^{-1/3} \exp(-R/R_A)$$
$$\Sigma(R) = \Sigma_B \exp(-R/R_B)$$

$$\Sigma(R) = \Sigma_C (R/R_C)^{-c} \left[1 + (R/R_C)^{1/a} \right]^{(c)}$$

-b)a

 $\Pr \quad \Sigma(R) = \Sigma_D (R/R_C)^{-3}$

Separation Radius: R_D

Determined Model Parameters: M33

- Stars Component
 - $\Sigma_A = 169 M_{sun} pc^{-2}$, $\Sigma_B = 5 M_{sun} pc^{-2}$
 - R_A = 2.2 kpc, R_B = 6.3 kpc
- Gas Component

•
$$\Sigma_{\rm C} = 6 \, {\rm M}_{\rm sun} {\rm pc}^{-2}$$
, $\Sigma_{\rm D} = 2.5 \, {\rm M}_{\rm sun} {\rm pc}^{-2}$

- a = 0.05, b = 5.5, c = 0.05
- Separation Radius
 - R_D = 10.18 kpc

Determined Stars Disc Model of M33

Determined Gas Disc Model of M33

Determined Rotation Curve of Stars and Gas

Deconvolved Rotation Curve of M33

Deconvolved Rotation Curve of M33

Rotation Curve of M33

Trial Explanation by Disc Mass Model

Unsatisfactory Result of Deconvolution

- Hump near R = 3-8 kpc
- Assumption: Disc Mass Only
 - Unknown Surface Mass Density Profile
- Hints from Rotation Curve Itself
 - Double-Power-Law-like Feature

$$V(R) = V_0(R/R_V)^{-\gamma} \left[1 + (R/R_V)^{1/\alpha}\right]^{(\gamma-\beta)\alpha}$$

Rotation Curve Model

Rotation Curve Model

Approximation of M33 Rotation Curve

Double Power-Law Disc Mass Model

- Natural Expectation
- Double Power-Law Rotation Curve from Double Power-Law Surface Mass Density

$$\Sigma(R) = \Sigma_{S}(R/R_{S})^{-c} \left[1 + (R/R_{S})^{1/a}\right]^{(c-b)a}$$

Determined Model Parameters

$$\Sigma_{\rm S} = 1480 \,\,{\rm M_{sun} pc^{-2}}, \,{\rm R_{S}} = 2 \,\,{\rm kpc}$$

Model Rotation Curve

Model Rotation Curve

Rotation Curve of M33

Determined Disc Mass

Conclusion

- New Method to Compute Gravitational Field of Infinitely-Thin Disc
- Split Quadrature + Numerical Diff.
- Precise and Fast
- Test Computation of Various Discs
- Application to M33 Rotation Curve
 - Better Fit by Disc Dark Matter

References

- Corbelli et al., 2014, A&A, 572, A23
- Descarte, 1641, Meditationes de Prima Philosophia
- Durand, 1953, Electrostatique et Magnetostatique, Masson et Cie
- Freeman, 1970, ApJ, 160, 811
- Fukushima, 2010, Cele. Mech. Dyn. Astron., 108, 339
- Fukushima, 2014, Appl. Math. Comp., 238, 485
- Fukushima, 2015, J. Comp. Appl. Math., 63, 17
- Kellogg, 1929, Foundations of Potential Theory, Springer
- Navvaro, Frenk, and White, 1996, ApJ, 462, 563
- Press et al., 1992, Numerical Recipes in F77, Cambridge Univ. Press
- Sofue, 2015, PASJ, 67, 75
- Takahashi and Mori, 1973, Numer. Math., 21, 206
- Zhao, 1996, MNRAS, 278, 488

