Probing synchrotron self-compton turnover of blazars with VLBI+ALMA

S. Koyama, M. Kino, H. Nagai, et al.

Introduction

- Magnetically driven jets
 - How much is the actual value of the strength of the magnetic field at the base of the jet?

McKinney+06

Introduction

- Spectral indices of blazars at cm wavelength are usually flat because we observe sum of multiple components
- Many blazars show optically thin spectral indices with ALMA (≥86 GHz) (Nagai+, ALMA OT)
- To estimate the value of magnetic field strength using synchrotron self-absorption turnover, we need to know the spectrum turnover of the optically thick region

$$B_{ssa} \propto \theta^4 v_m^5 S_m^{-2}$$

How to estimate Bssa

using $B_{ssa} \propto \theta^4 v_m^5 S_m^{-2}$?

- We assume that the 86 GHz core size is the size of optically thick region
 - It is important to determine the accurate core size at 86 GHz by obtaining long baselines in both east-west and north-south direction including ALMA baselines
- To estimate the SSA turnover frequency and flux, we need to decompose the ALMA flux into optically thin region and optically thick region
 - We estimate the flux of optically thick region with VLBI at <86 GHz by scaling the factor of the cross section ratio
 - We derive the spectral index of the optically thin region using high sensitivity VLBI imaging, and extrapolate the index to ALMA region
 - 15-43 GHz: VLBI data (MOJAVE, KaVA, BU, Radio Astron etc.)
 - at 86 GHz: GMVA+KVN+phased-ALMA
 - at 230 GHz: EHT (if possible)

Why GMVA+phased-ALMA?

high baseline sensitivity (7σ)

$$\Delta B = 14.5 mJy \left(\frac{SEFD_{ALMA}}{52Jy}\right)^{1/2} \left(\frac{SEFD_{PV}}{653Jy}\right)^{1/2} \left(\frac{\Delta \nu}{512MHz}\right)^{-1/2} \left(\frac{\tau_{ff}}{10 \sec}\right)^{-1/2} \Delta B = 115 mJy \left(\frac{SEFD_{VLBA}}{3300Jy}\right)^{1/2} \left(\frac{SEFD_{PV}}{653Jy}\right)^{1/2} \left(\frac{\Delta \nu}{512MHz}\right)^{-1/2} \left(\frac{\tau_{ff}}{10 \sec}\right)^{-1/2}$$

3C 279, δ~5°

- Baseline sensitivity of ALMA baselines are
 ~several times higher than VLBA baselines
 →High imaging sensitivity to detect jet emission
- ALMA baselines fill the uv-coverage toward north-south direction
 Determination of core size in all direction

 \rightarrow Determination of core size in all direction

How to estimate Sssa?

Example for quasar 3C 345

Example for quasar 3C 345

Example for quasar 3C 345

Estimation of Bssa

$$B_{ssa} \sim 0.04G \left(\frac{\theta}{90\mu as}\right)^4 \left(\frac{\nu_m}{90GHz}\right)^5 \left(\frac{S_m}{2.2Jy}\right)^{-2} \left(\frac{\delta}{12}\right) \left(\frac{1}{1+z}\right)$$

 \rightarrow Consistent with the value of the magnetic field strength at the jet base derived by using core-shift measurement

Remaining problems

- Spectral index of optically thick part~ $0.9 \neq 2.5$
 - SSA region size could be smaller than our assumption
 - The fluxes of SSA region at lower frequencies could be lower than the values we used because of core shift effect
 →derived SSA fluxes are upper limit
- VLBI total flux
 - It should be measured with the same minimum uv distance

Future works

- Which sources are the best for this study?
 - apply the method to other sources, e.g., OJ 287, 3C 279, 3C 454.3, CTA 102, etc.
- We will consider the upper/lower limit and the errors to put stronger constraint on physical parameters

THANK YOU FOR LISTENING